17th April 2017 – Reeteka Sud, National Center for Biological Sciences, Bangalore, India

Reeteka SudMy academic training has been in the field of Neuroscience. I have been in love with the brain since I was 13 I think. Watching a NatGeo documentary about the brain one Sunday afternoon proved really rather significant. This was long before I had any views about career for myself, let alone knowing the possibility of career in Neuroscience. It’s true what they say — for this day and age — “I watch, therefore I am”. So, that’s who I am — a neuroscientist.

Several beautiful chance encounters since watching the NatGeo documentary, I found myself doing PhD, in Neuroscience! Here, I studied the changes happening in brain during chronic pain; how drugs influence these changes when they do, and don’t, relieve pain. When I was a graduate student, the human genome was first mapped. I started thinking about what genes can, and cannot, do. My postdoc work then naturally was about targeting how genetic elements (not always functional genes, but DNA sequences within genome) are involved — in increasing chances of a disease, and how that aspect can be used to develop better treatments.

Along the way, I added ‘science communication’ and ‘integrating research and education’, as two other things I really care about (and therefore will tweet about during my time with Biotweeps 🙂

27th March 2017 – Alicia McConnell, Boston Children’s Hospital/Harvard Medical School

Alicia McConnellHi Biotweeps! I am originally from North Carolina and was an Animal Science major as an undergraduate at North Carolina State University. For graduate school, I stayed in NC and received my Ph.D. in cell biology from Duke University. I then moved with my lab across the US to Cedars-Sinai Medical Center in Los Angeles during my second year to complete my graduate research on lung stem cell biology. My work was funded by NASA, who wanted to know the risk of cancer in astronauts exposed to cosmic radiation (harmful radiation found in space). To test this, we studied the behavior of lung stem cells in mice after exposure to simulated cosmic radiation and saw how that correlated to cancer development. This really interesting project led to the discovery that an important tumor suppressor gene, Trp53, is not only required for radiation response, but also controls normal lung stem cell division and differentiation, or the process of creating a more specialized cell. Seeing how changes in stem cell behavior directly affects cancer development made me want to better understand the process of tumor initiation and progression.

I am currently a postdoctoral fellow studying cancer biology in the Zon lab at Boston Children’s Hospital/Harvard Medical School. My research involves investigating the signaling pathways that cause normal pigmented cells, or melanocytes, to become cancerous. I use a unique zebrafish model to visualize the earliest stages of skin cancer formation. I love imaging, so be prepared for lots of microscopy and adorable fish pictures during my Biotweeps take over!

When I’m not in the lab, I am spending time outdoors hiking with my husband and two dogs, Roxie (a one-eyed pit mix) and Charlie (a Border Collie). I am also an avid aerialist and dancer; I love being upside down! Follow me on twitter @DrAMcConnell.

9th January 2017 – Kelsey Byers, University of Zürich

kelsey-byers-2Hi everyone!  My name is Kelsey Byers; I’m currently finishing up my first postdoc at the University of Zurich in Switzerland.

I grew up in the northeastern United States near Boston and did my undergraduate degree in biology; the program was focused on molecular and cellular biology.  I decided after four years of that and a fifth year as a technician working on transcription factors that I wanted to shift to a more evolutionary focus, while maintaining molecular biology & genetics in my toolkit.  I moved out west to Seattle for a PhD at the University of Washington in the Department of Biology in evolutionary genetics and speciation with my PhD advisors H.D. “Toby” Bradshaw, Jr. and Jeff Riffell.

In my PhD I worked with flowers in the genus Mimulus (the monkeyflowers, family Phrymaceae) and their pollinators.  Two species of Mimulus, Mimulus lewisii and M. cardinalis, are in sympatry (grow together) in the western slopes of the Sierra Nevada mountains in California.  Where they grow together, the main factor keeping them from hybridizing (the main reproductive isolation barrier) is pollinator choice – M. lewisii is pollinated by bumblebees, M. cardinalis by hummingbirds.  I was able to show with some experiments with hawkmoths that Mimulus lewisii produces floral scent, even though we can’t smell it (humans have very poor noses, as it happens, despite our response to coffee!).  It turns out that bumblebees respond very strongly to these weak scent compounds both neurologically and behaviorally.  I was able to work out the genetic basis of the species’ differences in floral scent compounds, and using transgenic plants in the greenhouse, I demonstrated that if you remove the most critical compound from M. lewisii, its bumblebee pollinators are less likely to visit it.

In August of 2014 I moved to Switzerland to work with Florian Schiestl and Philipp Schlueter on two species of alpine orchids in the genus Gymnadenia that are native to the Alps.  The two species are pretty closely related but look – and smell – really different!  Here I’m working less with speciation and am looking more at adaptation, focusing on two main projects. First, I’m looking at species differences in selection (including pollinator-mediated selection) on a large variety of floral traits in the field.  Second, I’m looking at the patterns of floral trait inheritance in hybrids in Gymnadenia – are they inherited as discrete ‘blocks’ of traits, or do hybrids align more closely to one parent or the other?

In the next few months I’ll be moving to the University of Cambridge to work on a postdoc with Chris Jiggins on speciation and reproductive isolation in Heliconius butterflies in Panama.  Although it’s a bit of a departure from my previous focus on plant-pollinator interactions, the broader concepts of chemical ecology, speciation genetics, and insect olfaction are very much at the center of my research work, so I’m very excited!

Feel free to ask anything and everything!  I’m excited to be here with Biotweeps!

5th of August 2016 – Claire Asher, Freelance science communicator / Innovation officer for the London NERC DTP

Claire AsherI am a science communicator with a background in biology, ecology and evolution. I did my undergraduate degree at the University of Sussex, where I discovered a passion for evolutionary biology and animal behaviour. This led me to study for my masters in Evolutionary and Behavioural Ecology at the University of Exeter before beginning my PhD at the University of Leeds in 2009. There I spent a fascinating, exciting and testing four years studying the behaviour and genetics of the giant Brazillian ant, Dinoponera quadriceps, also known as dinosaur ants. This project took me out to remote field sites in Brazil, and also into the lab and the incredibly fast-paced world of gene expression and sequencing.

During my PhD I discovered another passion – for communicating science. By getting involved in public engagement events, writing my own science blog (Curious Meerkat), and working on the BBC4 documentary, ‘Planet Ant’, I realised my real vocation in life is sharing the scientific world with others. I think my interests are too broad to work as a professional scientist, which requires you to focus so intensely on one small area. After my thesis was finally printed and bound, with nearly 5 years of blogging and unpaid writing experience, I felt ready to dive into the world of freelance science communication.

Or, wade in as far as the waist, at least. Since completing my PhD I’ve been splitting my time between freelance science writing, and a part-time job at University College London – first as Knowledge Transfer Officer for the Centre for Biodiversity and Environment Research (CBER), and now as Innovation and Impact Officer for the London NERC DTP. These roles involve communicating science to a broad range of audiences, from the public to business, industry and policy-makers. Working closely with the PhD students of the DTP has been a particularly rewarding experience.

Although I spent years training to be a scientist, I’ve found that I’m much happier being ‘science adjacent’ – working as a science communicator allows me to learn about a huge variety of different topics, speak to lots of interesting people, and feed my insatiable curiosity about the natural world.

1st August 2016 – Martin Johnsson, Linköping University, Sweden

Martin JohnssonI am a postdoctoral researcher at Linköping University in Sweden. I am interested in the genetic basis of quantitative traits, in applying genomic tools to quantitative genetics, and in chicken domestication. That is, I use computers and pipettes to figure out what genes and genetic variants make domestic chickens different from wild chickens, and feral chickens different from both of them. I am also involved a bit with fruit fly and dog genetics.

Domestic animals have changed a lot from to their wild cousins. Just compare a domestic layer, broiler or fancy breed chicken to the Red Junglefowl, or a pug to a wolf. These evolutionary changes happened during the last 10 000 years — a few thousand less for the chicken, and a few more for the dog. Thus, domestic animals are great for studying genetic differences in traits. Populations and breeds are genetically different from each other, and from wild populations. Also, Red Junglefowl are still here, and can interbreed with domestic chickens, so that we can make crosses between them.

In our group, we work with a intercross of layer chickens and Red Junglefowl. Each individual carries a different mixture of domestic and Red Junglefowl variants. We then measure all kinds of traits that vary in the intercross population. For instance, we record body mass, reactions in different behavioural tests, gene expression in different tissues, and so on. Then we type them for a set of genetic markers, and find the markers that are associated with differences in traits. Thus, we build up a map of the genetic basis of chicken domestication.

During this week I will tweet about all of this. There will also be notes from the everyday business of research. At the time of writing this bio, I am not sure what I will be working on during the week, but laboratory selfies and an inordinate fondness for chicken combs is to be expected. See you on Twitter!

9th May 2016 – The Wytham Tit Project, University of Oxford

Wytham titsThe Wytham Tit Project is a long-term population study of great tits (Parus major) and blue tits (Cyanistes caeruleus) based at Wytham Woods near Oxford, UK, and is run by the Edward Grey Institute in the Department of Zoology at the University of Oxford. The project was set up in 1947 by John Gibb and David Lack, inspired by pioneering work by Kluijver in the Netherlands, in order to study the breeding biology of the great tit. Tits make excellent study species for ecological research as they readily take to artificial nest boxes, breed at high densities and cope well with being monitored. Lack initially put up 100 nest boxes in one section of Wytham Woods; the study was later expanded around 1960 to cover the entire 385-hectare woodland using over 1000 fixed location nest boxes. Over the last 57 years, we have monitored all the breeding attempts in these boxes and individually-marked all parents and offspring (spanning up to 40 generations), making this one of the longest running ecological studies of marked wild individual animals in the world.

Over these decades, scores of researchers, PhD students and undergraduates have used the Wytham tit system to explore a broad range of ecological questions, resulting in over 300 peer-reviewed publications. Some major themes of this work are (1) life-history biology, (2) response to climate change and the ecology of phenology (3) ecology and epidemiology of disease, (3) optimal foraging, (4) predator-prey interactions, (5) social behavior and spread of information through social networks, (6) the causes and consequences of individual variation in personality, and (7) quantitative and molecular genetics.

The 2016 breeding season is now well underway in Wytham Woods. Over 400 female tits have begun laying in our nest boxes and we expect another couple of hundred to start in the coming weeks. We already have our first hatchlings, which, over the next fortnight, will grow to c. 18 times their hatching weight before leaving the nest! Throughout the week we’ll be tweeting news and pictures from the woods (mainly tit-related but also other woodland activity) as well as facts, findings and videos about tit research. Tweeting will mainly be done by Dr Ella Cole (@EllaFCole, Research Fellow and tit project coordinator) and Prof Ben Sheldon (@Ben_Sheldon_EGI, Head of the Wytham Tit Project).

2nd May 2016 – James Borrell, Queen Mary University of London

James BorrellI am a conservation genetics PhD student in my final year at Queen Mary, University of London. My research interests are focused around the genetic consequences of population decline and habitat fragmentation, specifically in Dwarf birch (Betula nana), a small mountain tree.

Despite being somewhat unimpressive to look, Dwarf Birch is an ideal plant to study because it has so much going wrong. From a substantial range decline over recent decades, to climate change and rampant deer grazing, we now have evidence that it’s hybridising with two other related birch species, which appear to be breeding it out. On the plus side, it grows in remote and beautiful areas of the Scottish Highlands, so fieldwork is a pleasure. One of the best surviving populations is on the estate of Trees for Life, a conservation NGO.

As well as my PhD research, I also blog and have an interest and background in expeditions, particularly as a tool for engagement and science communication. I’ve worked on conservation projects around the world, including the Dhofar Mountains of Oman, the Peruvian Amazon and Southern Africa. Most recently, I led an international research expedition to Northern Madagascar studying edge effects in herpetofauna and filming a short documentary that will be out later this year. There’s more info about Expedition Angano, here.

Lastly, I also run a small social enterprise called Discover Conservation with stories from field biologists in weird and wonderful places around the world.

Expect lots of fieldwork photos!